
LISA Audit
DAO and Liquid Stacking

April 2024

By CoinFabrik

v202404



LISA Audit - DAO and Liquid Stacking
April 2024

Executive Summary 3
Scope 3
Methodology 4
Findings 5

Severity Classification 5
Issues Status 5
Critical Severity Issues 6
High Severity Issues 6

HI-01 Proposal Voting Bias due to Race Condition 6
Medium Severity Issues 7
Minor Severity Issues 7

MI-01 Misimplementation of SIP-010 Fungible Token Standard 7
Enhancements 8

Other Considerations 8
Centralization 8

LISA DAO 8
Mint endpoint 9

Upgrades 9
Mint endpoint 9

Different Decimals for lqSTX and vlqSTX 10
Updating Operators Invalidates Ongoing Proposals 10
Treasury SIP-010 Transfers Works for Tokens Authenticating via contract-caller 10

Changelog 10

Page 2 of 10



LISA Audit - DAO and Liquid Stacking
April 2024

Executive Summary
CoinFabrik was asked to audit the contracts for the LISA project, a liquid stacking project on
Stacks.

During this audit we found one high issue and one minor issue.

The high issue was acknowledged and the minor issue was partially resolved.

Scope
The audited files are from the git repository located at
https://github.com/lisalab-io/liquid-stacking. The audit is based on the commit
0f56793ebc8d20a06aee53de94a507f2bdbb7ac3. Fixes checked on commit
885af2c533994e9aa5a143d8980ddc2ae9fdeb7b.

The scope for this audit includes and is limited to the following 11 files:

● contracts/lisa-dao.clar: Core contract for executing proposals and
bootstrapping the LISA DAO.

● contracts/token-lqstx.clar: Contract for lqSTX, the rebase token for STX liquid
stacking.

● contracts/token-vlqstx.clar: Contract for wrapping lqSTX rebase token into a
non-rebasing one called vlqSTX, enhancing interoperability with existing DeFi
protocols.

● contracts/aux/lqstx-mint-registry.clar: Serves as a registry for lqSTX
minting and burning activities such as tracking request statuses, mint pending
amounts and nonces. It acts as the data counterpart for lqSTX mint/burn operations.

● contracts/extensions/lqstx-mint-endpoint.clar: Operational interface for
minting and burning lqSTX, serving as portal for LISA users to convert STX into the
lqSTX rebasing token and vice versa. This contract executes minting/burning logic
while relying on the aforementioned registry to store and retrieve data.

● contracts/extensions/lqstx-vault.clar: Vault that holds the STX of the
members, allowing the exchange of STX with strategies contracts for stacking (fund)
and retrieving back funds (refund).

● contracts/extensions/operators.clar: Proposal voting extension. Allowed
operators and voting threshold are settled here. Proposals are automatically
executed once the specified voting threshold is reached.

Page 3 of 10

https://github.com/lisalab-io/liquid-stacking


LISA Audit - DAO and Liquid Stacking
April 2024

● contracts/extensions/public-pools-strategy-manager.clar: Manages the
funding and refunding of the public pools strategy via authorized accounts, serving
as the administrative layer for managing public pools operations.

● contracts/extensions/token-vesting.clar: Vesting contract for LISA token.

● contracts/extensions/treasury.clar: Treasury for holding and transferring STX
and SIP-010 tokens.

● strategies/public-pools/public-pools-strategy.clar: Strategy contract for
public stacking pools. Holds the logic for funding/refunding the pools via the vault
and is able to aggregate and report the total amount of pooled STX (locked and
unlocked).

No other files in this repository were audited. Its dependencies are assumed to work
according to their documentation. Also, no tests were reviewed for this audit.

Methodology
CoinFabrik was provided with the source code, including automated tests that define the
expected behavior. Our auditors spent two weeks auditing the source code provided, which
includes understanding the context of use, analyzing the boundaries of the expected
behavior of each contract and function, understanding the implementation by the
development team (including dependencies beyond the scope to be audited) and
identifying possible situations in which the code allows the caller to reach a state that
exposes some vulnerability. Without being limited to them, the audit process included the
following analyses.

● Arithmetic errors
● Race conditions
● Misuse of block timestamps
● Denial of service attacks
● Excessive gas usage
● Missing or misused function qualifiers
● Needlessly complex code and contract interactions
● Poor or nonexistent error handling
● Insufficient validation of the input parameters
● Incorrect handling of cryptographic signatures
● Centralization and upgradeability

After delivering a report with our findings, the development team had the opportunity to
comment on every finding and fix the issues they considered convenient. Once fixed and/or
commented, our team ran a second review process to verify that the changes to the code
effectively solve the issues found and do not unintentionally add new ones. This report
includes the final status after the second review.

Page 4 of 10



LISA Audit - DAO and Liquid Stacking
April 2024

Findings
In the following table we summarize the security issues we found in this audit. The severity
classification criteria and the status meaning are explained below. This table does not
include the enhancements we suggest to implement, which are described in a specific
section after the security issues.

ID Title Severity Status

HI-01 Proposal Voting Bias due to Race Condition High Acknowledged

MI-01 Misimplementation of SIP-010 Fungible
Token Standard

Minor Partially Resolved

Severity Classification
Security risks are classified as follows:

● Critical: These are issues that we manage to exploit. They compromise the system
seriously. Blocking bugs are also included in this category. They must be fixed
immediately.

● High: These refer to a vulnerability that, if exploited, could have a substantial
impact, but requires a more extensive setup or effort compared to critical issues.
These pose a significant risk and demand immediate attention.

● Medium: These are potentially exploitable issues. Even though we did not manage
to exploit them or their impact is not clear, they might represent a security risk in the
near future. We suggest fixing them as soon as possible.

● Minor: These issues represent problems that are relatively small or difficult to take
advantage of, but might be exploited in combination with other issues. These kinds
of issues do not block deployments in production environments. They should be
taken into account and be fixed when possible.

Issues Status
An issue detected by this audit has one of the following statuses:

● Unresolved: The issue has not been resolved.

Page 5 of 10



LISA Audit - DAO and Liquid Stacking
April 2024

● Acknowledged: The issue remains in the code, but is a result of an intentional
decision. The reported risk is accepted by the development team.

● Resolved: Adjusted program implementation to eliminate the risk.

● Partially resolved: Adjusted program implementation to eliminate part of the risk.
The other part remains in the code, but is a result of an intentional decision.

● Mitigated: Implemented actions to minimize the impact or likelihood of the risk.

Critical Severity Issues
No issues found.

High Severity Issues

HI-01 Proposal Voting Bias due to Race Condition
Location:

● contracts/extensions/operators.clar: 43-66

Proposals are voted and executed through the operators.clar contract. The requirements
for a proposal to be executed are:

● The difference between positive and negative votes (signals) must be equal or
higher than the proposal-threshold.

● Proposal must be in a valid time frame given by proposal-validity-period.
● Neither the voting threshold nor the authorized operators should have been

changed after proposal’s creation (proposed-at greater than
operators-update-height).

Since there is no minimum timeframe nor minimum number of votes to execute the
proposal, a race condition can happen for executing calls to signal function.

Suppose a simple scenario were proposal-threshold is 3 and there are a total of 10
operators, half of them are in favour and half of them are against. Here overall count is zero,
but the actual result depends on the transaction execution order. Operators in favor could
try to front-run negative votes or node operators could order the transactions if they are
interested in a specific outcome. Note once the threshold is met, proposal execution is
within the same signal call.

Recommendation
Add a minimum waiting period since proposal creation or require a minimum amount of
total votes before proposals can be executed.

Page 6 of 10



LISA Audit - DAO and Liquid Stacking
April 2024

Status
Acknowledged. The development team stated this is an intentional decision.

Medium Severity Issues
No issues found.

Minor Severity Issues

MI-01 Misimplementation of SIP-010 Fungible Token Standard
Location:

● contracts/token-lqstx.clar: 116

● contracts/token-vlqstx.clar: 42

● contracts/extensions/treasury.clar: 5, 23

● contracts/traits/sip-010-transferable-trait.clar (out of this audit scope)
● contracts/token-lisa.clar (out of this audit scope)

The fungible tokens within the LISA protocol (lqSTX, vlqSTX and LISA) utilize a transfer
function with the signature

(transfer (uint principal principal (optional (buff 2048))) (response bool

uint)).

This signature deviates from the SIP-010 Fungible Token Standard, which specifies the last
parameter (typically named memo) as (optional (buff 34)) . While the implemented1

signature technically adheres to the lower bounds set by the SIP-010 Standard Trait , it is2

not in complete alignment with it. This discrepancy can lead to unexpected behavior,
especially when operating with external DeFi protocols that expect a memo field of 34
bytes.

The treasury extension contract, which consists of three governance functions, is also
affected by this issue:

● stx-stransfer: Executes STX transfers from the treasury.
● sip010-transfer: Intends to manage transfers of tokens compliant with the

SIP-010 Fungible Token Standard from the treasury.
● proxy-call: Handles special ad-hoc situations without overloading the treasury

functionality.

The bug appears in treasury::sip010-transfer function, which takes as parameter the
sip-010-transferable-trait defined with the aforementioned function signature,
setting a lower bound of (optional (buff 2048)) for the last transfer parameter. This
setting results in a mismatch, as sip010-transfer might fail when dealing with tokens

2 SP3FBR2AGK5H9QBDH3EEN6DF8EK8JY7RX8QJ5SVTE.sip-010-trait-ft-standard.sip-010-trait
1 https://github.com/stacksgov/sips/blob/main/sips/sip-010/sip-010-fungible-token-standard.md

Page 7 of 10

https://explorer.hiro.so/txid/SP3FBR2AGK5H9QBDH3EEN6DF8EK8JY7RX8QJ5SVTE.sip-010-trait-ft-standard?chain=mainnet
https://github.com/stacksgov/sips/blob/main/sips/sip-010/sip-010-fungible-token-standard.md


LISA Audit - DAO and Liquid Stacking
April 2024

that adhere strictly to the SIP-010 Standard Trait with a memo field less than 2048 bytes.
Although the three LISA protocol tokens comply with this sip-010-transferable-trait,
and thus work with the treasury::sip010-transfer function, this does not hold
universally for all tokens following the SIP-010 Standard.

Recommendation
Make LISA tokens fully compatible with SIP-010 Fungible Token Standard to avoid
compatibility issues. Adding an impl-trait line at the beginning of each contract is
strongly recommended.

Additionally, modify sip-010-transferable-trait to be a true subset of SIP-010
Standard transfer functionalities, ensuring that every token adhering to SIP-010 Standard
Trait will implicitly adhere to SIP-010 Transferable Trait.

Status
Partially Resolved. The treasury contract was updated in order to support SIP-010 trait
instead of sip-010-transferable-trait. Transferable trait was removed. Tokens were
not modified since they are already deployed.

Enhancements
No enhancements are proposed.

Other Considerations
The considerations stated in this section are not right or wrong. We do not suggest any
action to fix them. But we consider that they may be of interest to other stakeholders of the
project, including users of the audited contracts, token holders or project investors.

Centralization

LISA DAO
The lisa-dao.clar contract is responsible for initializing the DAO, enabling/disabling
extensions and executing proposals. Governance functions throughout the audited
contracts are guarded by is-dao-or-extension function.

Key observations:

● The proposal executed in the construct must set one or more extensions; otherwise,
the DAO becomes unusable.

● Extensions hold a lot of power. They can set new extensions (without needing to do
so through a proposal) and can also execute proposals by calling execute. There is
total trust in the extensions. They should be thoroughly reviewed when voted.

Page 8 of 10



LISA Audit - DAO and Liquid Stacking
April 2024

● As of this audit, the only contract capable of executing proposals via the DAO is the
operators.clar contract.

Mint endpoint
Governance functions of the endpoint consists of the following.

● set-paused

The functionality of the endpoint as a whole can be paused, since the core public functions
(require-mint, require-burn, revoke-mint, revoke-burn, finalize-mint and
finalize-burn) are pausable. This could imply users STX amount freezed due to pending
mints and the impossibility to get stacked funds back. On the other hand, this feature can
be useful in a threatening situation.

● set-mint-delay

Users mint requests of lqSTX token have a mint delay. Requestors’ STX are held by the
vault from request until mint can be finalized (when the waiting period ends). This delay is
controlled by the global variable mint-delay which is unbounded and can be arbitrarily
set. Note this affects the current pending mints request; however, they can revoke-mint
and get STX back.

● set-use-whitelist, set-whitelisted-many, set-whitelisted

When whitelisting is enabled (use-whitelisted set to true), only those principals
registered in the whitelist can call the request-mint function.

Upgrades
All extensions within the LISA DAO can be upgraded via proposals.

Mint endpoint
lqstx-mint-endpoint.clar contract serves as the operational interface for minting and
burning lqSTX and it is a fundamental part This audit focuses on the version
lqstx-mint-endpoint-v1-02.

Currently, there’s only one strategy contract, the public-pools-strategy.clar. As it
stands, the mint endpoint is designed to handle exclusively this strategy. This can be seen
on how rebase is built; it takes the total deployed amount of STX from the total amount in
the public pools strategy. However, there is defined an unused private function called
sum-strategy-amounts suggesting that multi-strategy logic will be available on an
upcoming version.

Page 9 of 10



LISA Audit - DAO and Liquid Stacking
April 2024

Di�erent Decimals for lqSTX and vlqSTX
The token-decimals variable is set independently in each of the token-lqstx.clar and
token-vlqstx.clar contracts. This does not represent a functional issue per se, as the
conversion between shares and tokens does not rely on decimals and units remain
consistent all along the way. However, differing token-decimals could lead to wallets
displaying confusing values for lqSTX and vlqSTX in users’ balances. It is recommended
that, in the event of a change in decimals, both variables should be updated within the
same transaction for consistency.

Updating Operators Invalidates Ongoing Proposals
Calling set-operators (changes operators) and set-proposal-threshold (modifies
threshold) invalidates current proposals. However, these actions can only be executed
through the DAO and its extensions. Moreover, proposals can be resubmitted if they are
invalidated in this manner.

Treasury SIP-010 Transfers Works for Tokens
Authenticating via contract-caller
The treasury's sip010-transfer function does not employ as-contract to wrap the
transfer call. Consequently, attempts to transfer tokens that authenticate solely via
tx-sender will fail. However, this limitation does not result in a freeze of funds; in such
cases, transfers can still be executed through treasury::proxy-call.

Changelog
● 2024-04-12 – Initial report based on commit

0f56793ebc8d20a06aee53de94a507f2bdbb7ac3.
● 2024-04-18 – Final report based on commit

885af2c533994e9aa5a143d8980ddc2ae9fdeb7b.

Disclaimer: This audit report is not a security warranty, investment advice, or an
approval of the LISA project since CoinFabrik has not reviewed its platform.
Moreover, it does not provide a smart contract code faultlessness guarantee.

Page 10 of 10


