
ALEX's Auto Token v3 Audit
May 2024

By CoinFabrik

v202405



ALEX's AutoToken v3 Audit
April 2024

Executive Summary 3
Scope 3
Methodology 4
Findings 4

Severity Classification 5
Issues Status 6
Critical-Severity Issues 6
High-Severity Issues 6

HI-01 Double Conversion In add-to-position() Could Lead to Losses 6
HI-02 Incorrect Quantities In *-redeem functions 7

Medium Severity Issues 7
ME-01 Authentication For Privileged Calls 7
ME-02 Authorization In Reserve Operations 8

Minor Severity Issues 9
MI-01 Misleading SIP-010 Implementation 9
MI-02 Fixed Functions Implementations Are Misleading 9
MI-03 Division by Zero in Token to Shares Conversion 10
MI-04 Sum Over List Could Skip Errors Leading To Unclaimed Funds 10
MI-05 Arbitrary Decimals Could Be Dangerous 10
MI-06 Problems With set-decimals() 11
MI-07 Use Of Named Constant Instead for uint 11

Enhancements 12
EN-01 Apocryphal SIP-10 trait 12
EN-02 Dead Code 13
EN-03 Function set-start-cycle() Accepting Arbitrary Values 13
EN-05 Precision Loss in Double Conversion 13
EN-06 Computation Savings And Precision Gains 14

Other Considerations 14
Centralization 14
About Testing and Documentation 14

Changelog 15

Page 2 of 15



ALEX's AutoToken v3 Audit
April 2024

Executive Summary
CoinFabrik was asked to audit the contracts for the Auto Token v3.1 project for ALEX.

The AutoALEX token enables auto-staking, which means that the token is automatically
harvested and re-staked, allowing holders to earn passive compound interest simply by
holding it.

During this audit we found 2 high-severity issues, 2 medium-severity issues and several
minor issues. Also, various enhancements were proposed.

The development team created new versions of the files for version 3.2, denoted by the
suffix v3-2, while retaining the audited versions associated with version 3.1, which end
with v3-1. Fixes were analyzed over the new files.

Additionally, the atALEXv3 and watALEXv3 tokens have been renamed in version 3.2 to
LiALEX and vLiALEX, respectively.

Scope
The audited files are from the git repository located at https://github.com/alexgo-io/alex-v1.
The audit is based on the commit ae0bdb4204136735c5207266ebe53b0300ad4cbe. Fixes
were checked on commit 7143851fb230a750992fbf2f79863235edc42f83.

The scope for this audit includes and is limited to the following 4 files:

● contracts/auto-token/auto-alex-v3-1.clar: Implements the Auto ALEX v3
(atALEXv3) token, a rebasing token backed by staked ALEX tokens and their
accruing rewards. The main idea behind Auto ALEX is that it auto-compounds by
systematically re-staking the rewards. In order to do this, the contract handles
staking and claiming processes, interacting with alex-reserve-pool contract as a
member on behalf of atALEXv3 token holders. Users can mint atALEXv3 in
exchange for ALEX.

● contracts/auto-token/auto-alex-v3-1-endpoint.clar: Centralizes the core
rebasing and re-staking logic for Auto ALEX and acts as the operational interface for
users interested in staking ALEX with Auto ALEX. Operations include: minting and
redeeming; claiming and re-staking regular rewards as atALEXv3; upgrading from
atALEXv2 to atALEXv3.

● contracts/auto-token/auto-alex-v3-1-registry.clar: Acts as a registry for
stake and redeem operations, serving as the data counterpart to the aforementioned
endpoint contract. It stores data such as redeem request details and tracks which
cycles have already been claimed and re-staked.

Page 3 of 15

https://github.com/alexgo-io/alex-v1


ALEX's AutoToken v3 Audit
April 2024

● contracts/auto-token/auto-alex-v3-1-wrapped.clar: Implements the
non-rebase version of the atALEXv3 rebase token.

No other files in this repository were audited. Its dependencies are assumed to work
according to their documentation. Also, no tests were reviewed for this audit.

Methodology
CoinFabrik was provided with the source code, tests defining limited use cases, with no
documentation. Our auditors spent one week auditing the source code provided, which
includes understanding the context of use, analyzing the boundaries of the expected
behavior of each contract and function, understanding the implementation by the
development team (including dependencies beyond the scope to be audited) and
identifying possible situations in which the code allows the caller to reach a state that
exposes some vulnerability. Without being limited to them, the audit process included the
following analyses.

● Arithmetic errors
● Race conditions
● Misuse of block timestamps
● Denial of service attacks
● Excessive gas usage
● Missing or misused function qualifiers
● Needlessly complex code and contract interactions
● Poor or nonexistent error handling
● Insufficient validation of the input parameters
● Incorrect handling of cryptographic signatures
● Centralization and upgradeability

Findings
In the following table we summarize the security issues we found in this audit. The severity
classification criteria and the status meaning are explained below. This table does not
include the enhancements we suggest to implement, which are described in a specific
section after the security issues.

Page 4 of 15



ALEX's AutoToken v3 Audit
April 2024

ID Title Severity Status

HI-01 Double Conversion In add-to-position()
Could Lead to Losses

High Resolved

HI-02 Incorrect Quantities In *-redeem functions High Resolved

ME-01 Authentication For Privileged Calls Medium Mitigated

ME-02 Authorization In Reserve Operations Medium Acknowledged

MI-01 Misleading SIP-010 Implementation Minor Resolved

MI-02 Fixed Functions Implementations Are
Misleading

Minor Resolved

MI-03 Division by Zero in Token to Shares
Conversion

Minor Resolved

MI-04 Sum Over List Could Skip Errors Leading To
Unclaimed Funds

Minor Resolved

MI-05 Arbitrary Decimals Could Be Dangerous Minor Resolved

MI-06 Problems With set-decimals() Minor Resolved

MI-07 Use Of Named Constant Instead for uint Minor Resolved

Severity Classification
Security risks are classified as follows:

● Critical: These are issues that we manage to exploit. They compromise the system
seriously. Blocking bugs are also included in this category. They must be fixed
immediately.

● High: These refer to a vulnerability that, if exploited, could have a substantial
impact, but requires a more extensive setup or effort compared to critical issues.
These pose a significant risk and demand immediate attention.

● Medium: These are potentially exploitable issues. Even though we did not manage
to exploit them or their impact is not clear, they might represent a security risk in the
near future. We suggest fixing them as soon as possible.

● Minor: These issues represent problems that are relatively small or difficult to take
advantage of, but might be exploited in combination with other issues. These kinds

Page 5 of 15



ALEX's AutoToken v3 Audit
April 2024

of issues do not block deployments in production environments. They should be
taken into account and be fixed when possible.

Issues Status
An issue detected by this audit has one of the following statuses:

● Unresolved: The issue has not been resolved.

● Acknowledged: The issue remains in the code, but is a result of an intentional
decision. The reported risk is accepted by the development team.

● Resolved: Adjusted program implementation to eliminate the risk.

● Partially resolved: Adjusted program implementation to eliminate part of the risk.
The other part remains in the code, but is a result of an intentional decision.

● Mitigated: Implemented actions to minimize the impact or likelihood of the risk.

Critical-Severity Issues
No issues were identified in this category.

High-Severity Issues

HI-01 Double Conversion In add-to-position() Could Lead to
Losses
Location:

● contracts/auto-token/auto-alex-v3-1-endpoint.clar: 148, 178

The variable new-supply (computed as

(new-supply (get-tokens-to-shares dx))

is used in auto-token-v3-1-endpoint::add-to-position():L158 when dx should be
used for calling mint-fixed() which will actually mint

(get-tokens-to-shares amount)

tokens (now dx is being converted twice to tokens from shares).

Something analogous happens with the upgrade() function (L178) where intrinsic-dx
should replace new-supply.

Page 6 of 15



ALEX's AutoToken v3 Audit
April 2024

Recommendation
Use the correct variables as noted. Moreover, implement tests that assert that values are
converted correctly.

Status
Resolved. In auto-alex-v3-2-endpoint.clar the new-supply variable declaration was
removed from both functions, and corrected arguments are now passed to mint-fixed().
Also, the functions’ payload was updated to output the minted supply of atALEXv3 (now
renamed LiALEX) tokens instead of the shares. No tests or documentation were added.

HI-02 Incorrect Quantities In *-redeem functions
Location:

● contracts/auto-token/auto-alex-v3-1-endpoint.clar

The function auto-token-v3-1-endpoint::request-redeem() calls transfer-fixed()
using the parameter shares: amount , but the function expects an amount in token units.
The same thing happens with the other redeem functions (revoke-redeem() and
finalize-redeem()).

Recommendation
Use the correct variables as noted. Moreover, implement tests that assert that values are
converted correctly. Finally, we recommend the use of unambiguous variable and parameter
names.

Note, however, that the series of function calls involved does the conversion from shares to
tokens and back with the caveat that there may be small losses due to arithmetic precision
(see EN-05).

Status
Fixed. In auto-alex-v3-2-endpoint.clar the function was modified so that token
amounts are stored and passed; conversion happens when necessary. No tests or
documentation were added.

Medium Severity Issues

ME-01 Authentication For Privileged Calls
Location:

● contracts/auto-token/auto-alex-v3-1.clar

● contracts/auto-token/auto-alex-v3-1-endpoint

● contracts/auto-token/auto-alex-v3-1-registry.clar

● contracts/auto-token/auto-alex-v3-1-wrapped.clar

Page 7 of 15



ALEX's AutoToken v3 Audit
April 2024

Authentication is done via tx-sender in check-is-owner() function in all of the above
contracts. This is probably unnecessarily too general eluding the least privilege principle as
the use will be typically direct and using contract-caller will suffice.

The authorization for functions set-contract-owner() and set-approved-contract()
in the different contracts should adhere to the least-privilege policy. If we can ensure that
the contract-caller necessarily is the owner and will not require a more general permission,
make this explicit.

Authentication via tx-sender is done with the check-is-approved() function of
auto-alex-v3-1 and auto-alex-v3-1-registry contracts also. This is the way privileged
calls are guarded.

Recommendation
Use the principle of least privilege. Define functions that strictly adhere to this principle for
each use case, and use these functions instead of custom combinations of is-owner(),
is-approved() and conjunctions.

Status
Mitigated. Remediation relates to the auto-alex-v3-2-*.clar files. The development
team stated that they plan to assign the ownership of all of these contracts to the DAO. If
deployment will include setting as owner the DAO, which is not a standard user, this would
reduce risk for the is-owner() checks. For the checks implemented via the is-approved()
function, the risk exposed in ME-01 remains unchanged.

Developers mentioned they appreciate that a granular control over privileges is better than
the current model and will look to improve as part of future contract upgrades.

ME-02 Authorization In Reserve Operations
Location:

● contracts/auto-token/auto-alex-v3-1.clar

● contracts/auto-token/auto-alex-v3-1-endpoint

● contracts/auto-token/auto-alex-v3-1-registry.clar

● contracts/auto-token/auto-alex-v3-1-wrapped.clar

The function auto-alex-v3-1::set-reserve() authorization scheme appears to be too
lax, as it requires that the transaction sender is the owner or an approved contract, when it
is only called from rebase() in the endpoint contract.

The same happens with the functions set-staked-cycle(),
set-staked-cycle-shares-to-tokens(), set-redeem-request(),
set-redeem-shares-per-cycle(), set-redeem-tokens-per-cycle() in the registry
contract that probably can only be called from a single principal as contract-caller.

Page 8 of 15



ALEX's AutoToken v3 Audit
April 2024

Again, function auto-alex-v3-1::transfer()::152 uses tx-sender to authenticate the
user, allowing phishing attacks to happen via malicious contracts that could entice Auto
Token users to call a seemingly innocuous function that calls this transfer function. We
recommend asserting just with contact-caller, and if the use case necessitates the use of
tx-sender, then we suggest using an owner-updateable whitelist of trusted contracts as
contract callers. Analogous comments apply to auto-alex-v3-1-wrapped::transfer().

Recommendation
Use the principle of least privilege. Define functions that strictly adhere to this principle for
the use case.

Status
Acknowledged. The development team mentioned they appreciate that a granular control
over privileges is better than the current model and will look to improve as part of future
contract upgrades.

Minor Severity Issues

MI-01 Misleading SIP-010 Implementation
Location:

● contracts/auto-token/auto-alex-v3-1.clar

● contracts/auto-token/auto-alex-v3-1-wrapped.clar

Misimplementation of SIP-010 Fungible Token Standard. Tokens auto-alex-v3-1 and
auto-alex-v3-1-wrapped do not implement sip-010-trait strictly since the transfer()
function is implemented using the parameter (optional (buff 2048)) instead of the
optional memo field of 34 bytes. This does not trigger a problem immediately, but can lead
to compatibility issues when operating with external DeFi protocols that expect a memo
field of 34 bytes.

Similarly, the token-symbol variable allocated size is (string-ascii 10), which makes
auto-alex-v3-1::get-symbol() return (response (string-ascii 10) uint) instead
of (response (string-ascii 32) as the trait dictates.

Recommendation
Make ALEX tokens fully compatible with SIP-010 Fungible Token Standard to avoid
compatibility issues. Adding an impl-trait line at the beginning of each contract is
strongly recommended.

Status
Resolved. Changes have been applied to the auto-alex-v3-2-*.clar files. Both size
values were updated to match sip-010-trait.

Page 9 of 15



ALEX's AutoToken v3 Audit
April 2024

MI-02 Fixed Functions Implementations Are Misleading
Location:

● contracts/auto-token/auto-alex-v3-1.clar

● contracts/auto-token/auto-alex-v3-1-wrapped.clar

The *-fixed() functions in token contracts are misleading, as they do not implement the
fixed functionality. Although the change would only enter into effect if the owner changed
the decimals (via an owner-only call to set-decimals()), this could lead to avoidable
losses.

Recommendation
Either implement the functionality, or have these functions return an error.

Status
Resolved. Changes have been applied to the auto-alex-v3-2-*.clar files. The issue has
been effectively resolved by setting the token-decimals variable as a constant equal to u8.
This means fixed precision is the same as the decimal configuration and cannot be changed.
Consequently, *-fixed() functions invoking their corresponding non-fixed versions is a
consistent behaviour with no risks.

MI-03 Division by Zero in Token to Shares Conversion
Location:

● contracts/auto-token/auto-alex-v3-1-wrapped.clar

Function auto-alex-v3-1-wrapped::get-tokens-to-shares() makes a zero check in the
numerator of a division when the denominator should be used. Division by zero happens if
the balance of atALEX is zero.

Recommendation
Check the denominator for zero.

Status
Resolved. Changes have been applied to the auto-alex-v3-2-*.clar files.

MI-04 Sum Over List Could Skip Errors Leading To Unclaimed
Funds
Location:

● contracts/auto-token/auto-alex-v3-1-endpoint.clar

The function auto-alex-v3-1-endpoint::sum-claimed() (used by claim-and-mint
(reward-cycles (list 200 uint))) does a sum over a list of reward-cycle items using
fold; when some of these terms include errors, the items they represent are added as zero.

Page 10 of 15



ALEX's AutoToken v3 Audit
April 2024

No error or log is thrown. Hence, where one of these failing items represents a positive
value, it will be ignored and the values lost (see
alex-reserve-pool::claim-staking-reward-at-cycle() for context).

Recommendation
We recommend using a pattern analogous to that used in auto-alex-v3-1::check-err()
or notifying users of the error and allowing them to recover unclaimed rewards .

Status
Resolved. In auto-alex-v3-2-endpoint.clar the sum-claimed() function within the
auto-alex-v3-1-endpoint contract was modified in order to explicitly throw an error if
any of the reward cycles fail during the claiming process.

MI-05 Arbitrary Decimals Could Be Dangerous
Location:

● contracts/auto-token/auto-alex-v3-1.clar

● contracts/auto-token/auto-alex-v3-1-wrapped.clar

There should be a maximum for set-decimals() lest the owner create a DOS, with many
operations overflowing, by setting decimals to 10000 might, or setting it too small might
create money losses.

Recommendation
Add upper and lower bounds to set-decimals() functions in token contracts.

Status
Resolved. In the auto-alex-v3-2-*.clar files, the set-decimals() function was
removed from both token contracts and token-decimals was declared as a constant.

MI-06 Problems With set-decimals()
Location:

● contracts/auto-token/auto-alex-v3-1.clar

● contracts/auto-token/auto-alex-v3-1-wrapped.clar

The set-decimals() functionality is used by different contracts independently. Yet, there
are some synchronicity requirements that should be carefully considered. First, if one of the
decimals variables were to change while the others would not, this could lead to losses.
Also, there is a race condition when a user calls transfer() and decimals change
immediately before without him noticing this.

Recommendation
Consider synchronizing decimal variables in a single function call.

Page 11 of 15



ALEX's AutoToken v3 Audit
April 2024

Consider carefully announcing decimal changes to mitigate any risk for users being
surprised with decimal changes. Although pausing transfers is a second option, it also
implies a negative impact and we discourage following this path.

Status
Resolved. As with MI-05, the issue was addressed in the auto-alex-v3-2-*.clar files by
removing set-decimals() function from both token contracts and declaring
token-decimals as a constant.

MI-07 Use Of Named Constant Instead for uint
Location:

● contracts/auto-token/auto-alex-v3-1-endpoint.clar

In the endpoint contract, the value u32 is used at several places instead of the named
constant (define-constant redeem-delay-cycles u32) defined above. If the constant
were to change on a contract update, the developer is forced to change every occurrence.

Recommendation
Consider adhering to best practices and using the named constant at the code and defining
its value in the contract only once.

Status
Resolved. As recommended, the value u32 was replaced by a constant in
auto-alex-v3-2-endpoint.clar. Additionally, redeem-delay-cycles constant was
renamed to max-cycles to improve naming consistency.

Enhancements
These items do not represent a security risk. They are best practices that we suggest
implementing.

ID Title Status

EN-01 Apocryphal SIP-10 trait Not implemented

EN-02 Dead Code Implemented

EN-03 Function set-start-cycle() Accepting Arbitrary Values Not implemented

EN-04 Precision Loss in Double Conversion Not implemented

Page 12 of 15



ALEX's AutoToken v3 Audit
April 2024

ID Title Status

EN-05 Unnecessary Functionality in set-staked-cycle() Not implemented

EN-06 Computation Savings And Precision Gains Implemented

EN-01 Apocryphal SIP-10 trait
The contract trait-sip-010.clar defines a sip-010-trait which is a copy of the
traditional trait but with additional helper functions for 8-digit notation. There could arise
incompatibility problems for contracts used within this ecosystem that assume the
traditional implementation and fail to comply with this one.

Recommendation
Use a different name for this trait and specify in the documentation.

Status
Not implemented.

EN-02 Dead Code
The funcion auto-alex-v3-1-wrapped::check-is-approved() is not used. Neither
approved-contracts mapping. There are no privileged functions in
auto-alex-v3-1-wrapped.clar. Same happens in auto-alex-v3-1-endpoint.clar.

Recommendation
Remove dead code.

Status
Implemented.

EN-03 Function set-start-cycle() Accepting Arbitrary Values
The registry function set-start-cycle() accepts arbitrary input values when it probably
should be called once, or at least with increasing and bounded values. Consider restricting
it to prevent errors.

Recommendation
Restrict input as necessary..

Status
Not implemented.

Page 13 of 15



ALEX's AutoToken v3 Audit
April 2024

EN-04 Unnecessary Functionality in set-staked-cycle()
Function set-staked-cycle() is only used to change a mapping from false to true, but it is
not required to map any value from true to false.

Recommendation
Restrict input as necessary..

Status
Not implemented.

EN-05 Precision Loss in Double Conversion
Note that, due to losses in integer division, it happens that get-token-to-shares() and
get-shares-to-tokens() are not the inverse of each other.

Recommendation
Avoid making conversions from tokens to shares and back to tokens, and vice versa by
carefully keeping records of quantities.

Status
Not implemented.

EN-06 Computation Savings And Precision Gains
At the endpoint contract in finalize-redeem()::L228 the consecutive calls of div-down
and mul-down

(redeem-tokens (div-down (mul-down (get shares request-details)

first divide and then multiply by the constant 1e8. Consider simply using * and /.

Recommendation
Replace div-down with / and mul-down with *.

Status
Implemented. More explicitly, the code was modified so that the problem highlighted by
this enhancement was eliminated. There is no need to compute redeem-tokens.

Page 14 of 15



ALEX's AutoToken v3 Audit
April 2024

Other Considerations
The considerations stated in this section are not right or wrong. We do not suggest any
action to fix them. But we consider that they may be of interest to other stakeholders of the
project, including users of the audited contracts, token holders or project investors.

Centralization
As described in the authentication and authorization issues (HI-01 and HI-02) there are
some functions that have excessive power, and while they should only be called in certain
contexts, they can be called by the owner at arbitrary situations, e.g., set-reserve() or
set-decimals(). These capabilities should be restricted, and its uses documented for the
users.

About Testing and Documentation
We found that there is no overall documentation for the auto token v3.1, and only a few
functions include comments documenting their input. It is important for the underlying
protocol and use cases to be documented.

The tests in tests/auto-alex-v3_tests.ts only cover three restricted use cases. Some of
the issues detected in this report would have been caught with higher coverage testing. We
suggest that the team documents and develops tests covering use cases, boundary cases
and ensuring that the expected quantities are computed.

Changelog
● 2024-04-24 – Initial report based on commit

ae0bdb4204136735c5207266ebe53b0300ad4cbe.
● 2024-05-15 – Check fixes on commit

7143851fb230a750992fbf2f79863235edc42f83.

Disclaimer: This audit report is not a security warranty, investment advice, or an
approval of the ALEX Auto Token v3.1/v3.2 project since CoinFabrik has not
reviewed its platform. Moreover, it does not provide a smart contract code
faultlessness guarantee.

Page 15 of 15


