
AlexGo Audit
Launchpad, Vault, and Reserve Pool

January 2022

By CoinFabrik

AlexGo Launchpad, Vault, and Reserve Pool
January 2022

Introduction 3

Scope 3

Analyses 3

Summary of Findings 4

Security Issues 4

Privileged Roles 4

Security Issues Found 6

Severity Classification 6

Issues Status 6

Critical Severity Issues 6

CR-01 Unfair Lotteries through Weak Randomness 6

Medium Severity Issues 7

ME-01 Insecure Authentication through tx-sender 7

ME-02 Independent Winning Probability in Lottery 8

Minor Severity Issues 9

MI-01 Arithmetic Underflow Calculating Staking Reward 9

MI-02 Ended Pool can be Created 10

Enhancements 10

Table 10

Details 10

EN-01 Missing Source Code Comments 10

EN-02 Unnecessary Computation to Check if the Listing Is Activated 11

Changelog 11

Page 2 of 11

AlexGo Launchpad, Vault, and Reserve Pool
January 2022

Introduction
CoinFabrik was asked to audit the contracts for the AlexGo project. First we will
provide a summary of our discoveries and then we will show the details of our
findings.

Scope
The contracts audited are from the alex-v1 git repository. The audit is based on the
commit 44c44846bfbcce6096be04bd1380728c98f09ec8. The fixes were added to the
commit 31a5d660c83d41c10cd1b34498f02bc3a407721e.

The audited contracts are:

● clarity/contracts/alex-vault.clar: Contract that stores system tokens
and allows flash loans.

● clarity/contracts/pool/alex-launchpad.clar: IDO token launchpad.
● clarity/contracts/pool/alex-reserve-pool.clar: Contract for token

staking.

The scope of the audit is limited to those files. No other files in this repository were
audited. Its dependencies are assumed to work according to their documentation.
Also, no tests were reviewed for this audit.

Analyses
Without being limited to them, the audit process included the following analyses:

● Arithmetic errors
● Race conditions
● Reentrancy attacks
● Misuse of block timestamps
● Denial of service attacks
● Excessive gas usage
● Missing or misused function qualifiers
● Needlessly complex code and contract interactions
● Poor or nonexistent error handling
● Insufficient validation of the input parameters
● Incorrect handling of cryptographic signatures
● Centralization and upgradeability

Page 3 of 11

AlexGo Launchpad, Vault, and Reserve Pool
January 2022

Summary of Findings
We found a critical issue, two medium issues and a minor issue. Also, two
enhancements were proposed.

The critical severity issue was not totally resolved, two other issues were
acknowledged and two were fixed. An enhancement was implemented.

Security Issues
ID Title Severity Status

CR-01 Unfair Lotteries through Weak
Randomness

Critical Unresolved

ME-01 Insecure Authentication through
tx-sender

Medium Acknowledged

ME-02 Independent Winning Probability in
Lottery

Medium Acknowledged

MI-01 Arithmetic Underflow Calculating
Staking Reward

Minor Resolved

MI-02 Ended Pool can be Created Minor Resolved

Privileged Roles
These are the privileged roles that we identified on each of the audited contracts.

Alex-vault.clar
Owner

In the beginning, the owner is the address of the deployer. Then, the owner can set
an address as a new owner. Also, this role can set a new flash loan fee rate and add
new approved contracts, flash loan users and flash loan tokens. Finally, the owner
can transfer fungible and semi-fungible tokens stored in the vault.

Approved Contracts

The approved contracts are addresses which can execute the transfer functions to
move fungible and semi-fungible tokens from the vault contract. This address set is

Page 4 of 11

AlexGo Launchpad, Vault, and Reserve Pool
January 2022

initialized including alex-reserve-pool, collateral-rebalancing-pool,
fixed-weight-pool, liquidity-bootstrapping-pool, yield-token-pool, and
yield-collateral-rebalancing-pool.

Approved Flash Loan Users

Flash loan users are addresses allowed to be used when flash-loan() is called.
This contract should implement the specific trait in order for the vault contract to
call the execute() function.

Alex-launchpad.clar
Owner

In the beginning, the owner is the address of the deployer. Then, the owner can set
an address as a new owner. Also, this role can create new token-ticket pools.

Liquidity Provider

This is an address set by the owner for each pool created. This address is the only
one allowed to provide tokens to the pool. Also, this address receives the amount of
stacks paid to validate the winner ticket.

Alex-reserve-pool.clar
Owner

In the beginning, the owner is the address of the deployer. Then, the owner can set
an address as a new owner. Also, this role can add new approved contracts and
approved tokens, set a new activation delay, activation threshold, a new value for
the halving cycle and coinbase amount of a token and a new reward cycle length.
Finally, the owner can increase and decrease the balance of a token.

Approved Contracts

The approved contracts are addresses which can increase and decrease the balance
of a token. Initially, the contracts included in this set are:
collateral-rebalancing-pool, fixed-weight-pool, yield-token-pool,
yield-collateral-rebalancing-pool and the reserve pool itself.

Page 5 of 11

AlexGo Launchpad, Vault, and Reserve Pool
January 2022

Security Issues Found

Severity Classification
Security risks are classified as follows:

● Critical: These are issues that we manage to exploit. They compromise the
system seriously. They must be fixed immediately.

● Medium: These are potentially exploitable issues. Even though we did not
manage to exploit them or their impact is not clear, they might represent a
security risk in the near future. We suggest fixing them as soon as possible.

● Minor: These issues represent problems that are relatively small or difficult
to take advantage of but can be exploited in combination with other issues.
These kinds of issues do not block deployments in production environments.
They should be taken into account and be fixed when possible.

Issues Status
An issue detected by this audit can have four distinct statuses:

● Unresolved: The issue has not been resolved.
● Acknowledged: The issue remains in the code but is a result of an intentional

decision.
● Resolved: Adjusted program implementation to eliminate the risk.
● Mitigated: Implemented actions to minimize the impact or likelihood of the

risk

Critical Severity Issues

CR-01 Unfair Lotteries through Weak Randomness
Location:

● clarity/contracts/pool/alex-launchpad.clar

Users can validate their tickets during the registration process, delimited by the
variables registration-start and registration-end. A counter is increased for
each ticket validated, and each user has a range of positions related to when they
joined the lottery and the amount of tickets validated. When the registration ends
and the minimum amount of participants is reached, users can call claim() one
time for each ticket validated. This function determines if the ticket is a winner

Page 6 of 11

AlexGo Launchpad, Vault, and Reserve Pool
January 2022

based on a pseudo-random number modulo the counter of tickets. If the resulting
value is in the range of positions of tickets validated by the user, then it is a winner
ticket.

However, the first pseudo-random number is generated based on the vrf-seed of
registration-start block in the first call to claim(). For the subsequent calls,
the function calculates a new pseudo-random based on the latest random.
Therefore, since the contract is public and the process transparent, anyone can
calculate the sequence of values to be generated. Users can speculate with which
position is the most convenient to register themselves and when to claim based on
the following number in the sequence.

Recommendation
The speculation in the registration can be solved using the VRF seed of the block
next to the end of the registration (registration-end + 1) as randomness source.

Finally, the speculation in the claiming order can be solved computing the
pseudo-random number with the mentioned VRF seed and a value unique for each
ticket (e.g., the ticket’s position). Then, using two constant values, the claiming order
will not have an impact because the random number is already determined.

Status
Unresolved. claim() now uses registration-end instead of
registration-start for the VRF seed. The speculation was reduced, but it still
uses a seed that can be known if register() is called at registration-end. Using
the block next to registration-end can solve the problem.

The new changes also made the entire random sequence unpredictable. However,
the next random still can be predicted and the user might check if this random is
beneficial and wait for the next random if not. In order to avoid the speculation in
the claiming order, the number should be generated with either an input unknown
for the user or constant values. The first solution makes the next random
unpredictable for the user, while the second one makes it constant

Medium Severity Issues

ME-01 Insecure Authentication through tx-sender
Location:

● clarity/contracts/alex-vault.clar,

● clarity/contracts/pool/alex-launchpad.clar,

● clarity/contracts/pool/alex-reserve-pool.clar

Page 7 of 11

AlexGo Launchpad, Vault, and Reserve Pool
January 2022

Global variable tx-sender returns the original sender of the current transaction, or
if as-contract was called to modify the sending context, it returns that contract
principal. Using this variable for authentication is not secure. Actors in the system
could be targets of phishing. This is analogous to what happens to tx.origin and
msg.sender in Solidity. There, the convention is to use msg.sender, which works
like the contract-caller.

For instance, the vault’s owner can be tricked into calling a malicious contract which
executes vault.set-contract-owner() against his will.

Recommendation
Prefer contract-caller to tx-sender for authentication. contract-caller
returns the caller of the current contract context.

Status
Acknowledged. A new development would address this issue.

ME-02 Independent Winning Probability in Lottery
Location:

● clarity/contracts/pool/alex-launchpad.clar

As it was described in CR-01, each claim() execution generates a new random
number. Therefore, while there are tokens to transfer, the winning probability is
independent and the amount of winners is unknown. In order to solve it, the
function checks if all the tickets provided were won before executing the rest of the
function. When all the winner tickets are determined, the listing is completed and
new claims are not accepted.

This mechanism may result in two issues. Firstly, some tokens might not be claimed
if there are not enough winner tickets. Furthermore, there is no use given to this
remainder tokens. Secondly, it generates a race condition between the users to
claim before the listing is completed. Otherwise, a user will not be able to claim
even when he has tickets.

Recommendation

A solution would be to generate only n random numbers, where n is the number of
winning tickets. Then, claim() would check if one of the random numbers were in
the user’s range of tickets. However, due to Clarity limitations, this solution cannot
be implemented.

Page 8 of 11

AlexGo Launchpad, Vault, and Reserve Pool
January 2022

Status
Acknowledged.

Minor Severity Issues

MI-01 Arithmetic Underflow Calculating Staking Reward
Location:

● clarity/contracts/pool/alex-reserve-pool.clar:[379]

In get-entitled-staking-reward(), the rewards are calculated with the quotient
between the amount staked by the user and the total amount staked, multiplied by
the token’s coinbase amount.

(define-private (get-entitled-staking-reward (token principal) (user-id uint) (target-cycle

uint) (stacks-height uint))

(let

(

(total-staked-this-cycle (get-staking-stats-at-cycle-or-default token target-cycle))

(user-staked-this-cycle (get amount-staked (get-staker-at-cycle-or-default token

target-cycle user-id)))

)

(match (get-reward-cycle token stacks-height)

current-cycle

(mul-down (get-coinbase-amount-or-default token target-cycle) (div-down

user-staked-this-cycle total-staked-this-cycle))

u0

)

)

)

Quotient’s result may have a higher imprecision than the result obtained by
multiplying first and then dividing it by the total staked.

Recommendation
For a more precise result, get the product between the coinbase amount and the
amount staked by the user, and divide it by the total amount staked:
(div-down

(mul-down (get-coinbase-amount-or-default token target-cycle) user-staked-this-cycle)

total-staked-this-cycle

)

Status
Resolved.

Page 9 of 11

AlexGo Launchpad, Vault, and Reserve Pool
January 2022

MI-02 Ended Pool can be Created
Location:

● clarity/contracts/pool/alex-launchpad.clar

Pool creation function (create-pool()) does not validate the block numbers
provided for the registration-start and registration-end variables.
Therefore, a pool can be created without time for registration.

Recommendation
The input registration-start should be checked to be equal or greater than the
current block number.

Status
Resolved.

Enhancements
These items do not represent a security risk. They are best practices that we
suggest implementing.

Table
ID Title Status

EN-01 Missing Source Code Comments Not implemented

EN-02 Unnecessary Computation to Check if the Listing Is
Activated

Implemented

Details

EN-01 Missing Source Code Comments
Location:

● clarity/contracts/pool/alex-launchpad.clar

The launchpad contract lacks of function documentation in the source code.
Comments documenting a function helps the contract reader to understand better
the usage of that piece of code.

Status
Not implemented. The development team committed to add the documentation.

Page 10 of 11

AlexGo Launchpad, Vault, and Reserve Pool
January 2022

EN-02 Unnecessary Computation to Check if the Listing Is Activated
Location:

● clarity/contracts/pool/alex-launchpad.clar

The listing mapping contains a variable named activated that is initially set to
false when the pool is created and then increased for each new register. The
register() function updates the value to true if the amount of tickets validated
(total-subscribed) reached the activation-threshold. There is no other
function that updates the total-subscribed value nor the activated value.
However, the getter function is-listing-activated() computes again the
comparison between the two variables instead of reading from the activated

variable.

Recommendation
Read from the activated variable instead of performing the comparison again.

Status
Implemented.

Changelog
● 2022-01-07 – Initial report based on commit

44c44846bfbcce6096be04bd1380728c98f09ec8.
● 2022-01-11 – Reaudit report based on the fixes in commit

31a5d660c83d41c10cd1b34498f02bc3a407721e.

Disclaimer: This audit report is not a security warranty, investment advice, or an
approval of the AlexGo project since CoinFabrik has not reviewed its platform.
Moreover, it does not provide a smart contract code faultlessness guarantee.

Page 11 of 11

