
ALEX Audit
Bitcoin Oracle and Bridge

October 2023

By CoinFabrik

v202307



ALEX - Bitcoin Oracle and Bridge
October 2023

Executive Summary 3
Scope 3
Methodology 4
Findings 5

Severity Classification 5
Issues Status 6
Critical Severity Issues 6
High Severity Issues 6

HI-01 Non-mined Transactions Processed 6
HI-02 Peg-out not Payed Using Past Transaction 7

Medium Severity Issues 8
Minor Severity Issues 8

MI-01 Authentication via tx-sender 8
MI-02 Hash Collision Because of Default Value 8

Enhancements 9
EN-01 Unused Pausing Mechanism 9
EN-02 Unused Utility Functions 10

Other Considerations 10
Centralization 10
Upgrades 10

Changelog 11

Page 2 of 11



ALEX - Bitcoin Oracle and Bridge
October 2023

Executive Summary
CoinFabrik was asked to audit the contracts for the ALEX project.

Bitcoin Oracle is a project with the goal of creating a tamper-proof and censorship-resistant
indexing system for events within meta-protocols like BRC20. It relies on the Bitcoin chain
as the ultimate source of truth, eliminating the necessity of depending on a single
centralized off-chain indexer.

During this audit we found two high issues, and two minor issues. Also, two enhancements
were proposed.

Three issues were resolved, and one mitigated. One of the enhancements was
implemented.

Scope
The audited files are from the git repository located at the following repositories:

● https://github.com/alexgo-io/bitcoin-oracle at commit
4f8b451df3e0fd269b04eefab148ae428ae172ad. Fixes reviewed on commit
88489987d706a3c0814017a2d9bf0ee0b2e4e231.

● https://github.com/alexgo-io/bitcoin-bridge at commit
1cc34e39d082191d90e166b3199297007253c939. Fixes reviewed on commit
daa01a8127965d289e7dc051d244033df12fdb7d.

The scope for this audit includes and is limited to the following files:

● bitcoin-oracle/packages/contracts/brc20-indexer-v1/contracts/indexer

.clar: The contract indexes BRC-20 transactions on the Bitcoin network.
● bitcoin-oracle/packages/contracts/brc20-indexer-v1/contracts/indexer

-registry.clar: Storage contract for the indexer.
● bitcoin-bridge/contracts/btc-bridge-endpoint.clar: Bridge for exchanging

BTC-aBTC.
● bitcoin-bridge/contracts/btc-bridge-registry.clar: Storage contract for

the endpoint.

No other files in this repository were audited. Its dependencies are assumed to work
according to their documentation. Also, no tests were reviewed for this audit.

Page 3 of 11

https://github.com/alexgo-io/bitcoin-oracle
https://github.com/alexgo-io/bitcoin-bridge


ALEX - Bitcoin Oracle and Bridge
October 2023

Methodology
CoinFabrik was provided with the source code, including automated tests that define the
expected behavior, and general documentation about the project. Our auditors spent one
week auditing the source code provided, which includes understanding the context of use,
analyzing the boundaries of the expected behavior of each contract and function,
understanding the implementation by the development team (including dependencies
beyond the scope to be audited) and identifying possible situations in which the code
allows the caller to reach a state that exposes some vulnerability. Without being limited to
them, the audit process included the following analyses.

● Arithmetic errors
● Race conditions
● Reentrancy attacks
● Misuse of block timestamps
● Denial of service attacks
● Excessive gas usage
● Missing or misused function qualifiers
● Needlessly complex code and contract interactions
● Poor or nonexistent error handling
● Insufficient validation of the input parameters
● Incorrect handling of cryptographic signatures
● Centralization and upgradeability

After delivering a report with our findings, the development team had the opportunity to
comment on every finding and fix the issues they considered convenient. Once fixed and/or
commented, our team ran a second review process to verify that the changes to the code
effectively solve the issues found and do not unintentionally add new ones. This report
includes the final status after the second review.

Page 4 of 11



ALEX - Bitcoin Oracle and Bridge
October 2023

Findings
In the following table we summarize the security issues we found in this audit. The severity
classification criteria and the status meaning are explained below. This table does not
include the enhancements we suggest to implement, which are described in a specific
section after the security issues.

ID Title Severity Status

HI-01 Non-mined Transactions Processed High Resolved

HI-02 Peg-out not Payed Using Past Transaction High Resolved

MI-01 Authentication via tx-sender Minor Mitigated

MI-02 Hash Collision Because of Default Value Minor Resolved

Severity Classification
Security risks are classified as follows:

● Critical: These are issues that we manage to exploit. They compromise the system
seriously. Blocking bugs are also included in this category. They must be fixed
immediately.

● High: These refer to a vulnerability that, if exploited, could have a substantial
impact, but requires a more extensive setup or effort compared to critical issues.
These pose a significant risk and demand immediate attention.

● Medium: These are potentially exploitable issues. Even though we did not manage
to exploit them or their impact is not clear, they might represent a security risk in the
near future. We suggest fixing them as soon as possible.

● Minor: These issues represent problems that are relatively small or difficult to take
advantage of, but might be exploited in combination with other issues. These kinds
of issues do not block deployments in production environments. They should be
taken into account and be fixed when possible.

Page 5 of 11



ALEX - Bitcoin Oracle and Bridge
October 2023

Issues Status
An issue detected by this audit has one of the following statuses:

● Unresolved: The issue has not been resolved.

● Acknowledged: The issue remains in the code, but is a result of an intentional
decision. The reported risk is accepted by the development team.

● Resolved: Adjusted program implementation to eliminate the risk.

● Partially resolved: Adjusted program implementation to eliminate part of the risk.
The other part remains in the code, but is a result of an intentional decision.

● Mitigated: Implemented actions to minimize the impact or likelihood of the risk.

Critical Severity Issues
No issues found.

High Severity Issues

HI-01 Non-mined Transactions Processed
Location:

● bitcoin-oracle/packages/contracts/brc20-indexer-v1/contracts/indexer

.clar:182

Classification:
● CWE-20: Improper Input Validation1

In the index-tx-iter() function, there is an issue related to the handling of the
verify-mined() function's return values. The verify-mined() function can return one of
three values: (ok true), (ok false), or an error. When it is true, the transaction was
mined at the provided block, when false it was not, and an error is related to an error in the
merkle proof. The code uses try! to check for errors but does not verify the boolean value
returned wrapped in the response type. Therefore, the function does not fail if the
transaction is not mined in the block.

If validators intentionally cooperate to sign a non-mined transaction, it can successfully
pass through the indexer. This means that unmined and potentially malicious transactions
can be processed without being properly validated, leading to potential security breaches
and unauthorized actions within the system.

1 https://cwe.mitre.org/data/definitions/20.html

Page 6 of 11

https://cwe.mitre.org/data/definitions/20.html


ALEX - Bitcoin Oracle and Bridge
October 2023

Recommendation
Check the boolean value wrapped in the response type and fail if it is false.

Status
Resolved. Boolean checked.

HI-02 Peg-out not Payed Using Past Transaction
Location:

● bitcoin-bridge/contracts/btc-bridge-endpoint.clar:242-280

Classification:
● CWE-20: Improper Input Validation

The peg-out process for bridging BTC from Stacks to Bitcoin consists of the aBTC owner
requesting it on the Stacks’ smart contract and another actor claiming the request,
transferring the BTC to the address of the requester and then finalizing the peg-out
providing the transaction and necessary block data in order to verify the transaction was
mined.
However, when finalizing the peg-out, the contract does not check if the transaction
provided is actually related to the peg-out. Since there is no association between the
address on Stacks and the address on Bitcoin, the only validation on the transaction is that
the requester received the amount he asked for and the Bitcoin address provided when
claiming is in the outputs. Therefore, an attacker can use any transaction which has not
been used for a peg-out before, while the output for the requester has the same value as
the requested, without actually transferring the BTC.

Steps to Replicate
● Monitor the contract for a new peg-out request.
● Search into the requester's transaction history on Bitcoin for a transaction where the

output for that user has the same value as the requested.
● Claim the peg-out providing the attacker's Stacks address and original Bitcoin

address from the transaction found in requester’s history.
● Finalize the peg-out providing the transaction and block data from the transaction

found in requester’s history.

Recommendation
This issue can be mitigated by storing the burn block height when the peg-out is claimed
and then validating the block headers provided when finalizing the peg-out against the
stored height.

Status
Resolved. Fixed according to the recommendation.

Page 7 of 11



ALEX - Bitcoin Oracle and Bridge
October 2023

Medium Severity Issues
No issues found.

Minor Severity Issues

MI-01 Authentication via tx-sender
Location:

● bitcoin-oracle/packages/contracts/brc20-indexer-v1/contracts/indexer

.clar

● bitcoin-oracle/packages/contracts/brc20-indexer-v1/contracts/indexer

-registry.clar

● bitcoin-bridge/contracts/btc-bridge-endpoint.clar

● bitcoin-bridge/contracts/btc-bridge-registry.clar

The system utilizes tx-sender for its authentication processes. This method, while
functional, presents latent vulnerabilities, particularly exposing actors within the system to
threats known as phishing .2

Actors could inadvertently activate a malicious contract. Once activated, the deceptive
contract can access and initiate certain functions, presenting actions as if they were done by
the original actor. This impersonation potential poses risks, depending on the specific
function being accessed.

The system only uses them for owner authentication. Therefore, it is less likely to be
exploited while using a dedicated account as owner.

Recommendation
It is advisable to switch from using tx-sender to contract-caller for a more reliable and
secure authentication method. Furthermore, introducing a mapping for trusted callers can
add an extra layer of security, particularly if the system needs to interact with specific
intermediary contracts.

Status
Mitigated. The contract owner will be the Decentralized Autonomous Organization (DAO)
deployed by ALEX. Therefore, the contract calls will be voted by the participants.

MI-02 Hash Collision Because of Default Value
Location:

2 https://www.coinfabrik.com/blog/tx-sender-in-clarity-smart-contracts/

Page 8 of 11

https://www.coinfabrik.com/blog/tx-sender-in-clarity-smart-contracts/


ALEX - Bitcoin Oracle and Bridge
October 2023

● bitcoin-oracle/packages/contracts/brc20-indexer-v1/contracts/indexer

.clar

The current implementation of the hash-tx() function in the codebase uses a default-to
mechanism to handle cases where a value is too large to fit within the specified buffer.
While this approach may seem convenient, it introduces a potential security risk in the form
of hash collisions.

A hash collision occurs when two different inputs produce the same hash output. In this
case, if the value assigned to the argument exceeds the buffer's capacity, it is set to a
default value (0x), potentially causing multiple different inputs to produce the same hash
output.

Recommendation
Since the types defined cannot exceed the buffer’s capacity, it is better to use
unwrap-panic for unwrapping the hash value.

Status
Resolved. unwrap-panic implemented instead of default value.

Enhancements
These items do not represent a security risk. They are best practices that we suggest
implementing.

ID Title Status

EN-01 Unused Pausing Mechanism Implemented

EN-02 Unused Utility Functions Not implemented

EN-01 Unused Pausing Mechanism
Location:

● bitcoin-oracle/packages/contracts/brc20-indexer-v1/contracts/indexer

-registry.clar

The indexer registry defines pausing-related variables, errors and functions, but they are
not used in the operative functions. Therefore, pausing the contract does not stop any
functionality.

Page 9 of 11



ALEX - Bitcoin Oracle and Bridge
October 2023

Recommendation
Either remove the pausing mechanism or implement it for stopping the operative functions
when setting to true.

Status
Implemented. Pausing mechanism implemented.

EN-02 Unused Utility Functions
Location:

● bitcoin-bridge/contracts/btc-bridge-endpoint.clar

The indexer registry defines mathematical utility functions min and div-down, but these
functions are not used by any of the public functions.

Recommendation
Remove min and div-down functions.

Status
Not implemented.

Other Considerations
The considerations stated in this section are not right or wrong. We do not suggest any
action to fix them. But we consider that they may be of interest to other stakeholders of the
project, including users of the audited contracts, token holders or project investors.

Centralization
The two systems are not completely autonomous. They require backends for validating
transactions in the bitcoin oracle, and another for sending Bitcoin transactions in order to
finalize peg-outs.

Upgrades
Since the implementations are separated from the storage and can be paused, the two
systems can be upgraded.

Page 10 of 11



ALEX - Bitcoin Oracle and Bridge
October 2023

Changelog
● 2023-10-30 – Initial report based on commits

4f8b451df3e0fd269b04eefab148ae428ae172ad and
1cc34e39d082191d90e166b3199297007253c939.

● 2023-11-06 – Final report based on commits
88489987d706a3c0814017a2d9bf0ee0b2e4e231 and
daa01a8127965d289e7dc051d244033df12fdb7d.

Disclaimer: This audit report is not a security warranty, investment advice, or an
approval of the ALEX project since CoinFabrik has not reviewed its platform.
Moreover, it does not provide a smart contract code faultlessness guarantee.

Page 11 of 11


